Quantum information cannot be split into complementary parts

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Information Cannot Be Split into Complementary Parts

We prove a new impossibility for quantum information (the no-splitting theorem): an unknown quantum bit (qubit) cannot be split into two complementary qubits. This impossibility, together with the no-cloning theorem, demonstrates that an unknown qubit state is a single entity, which cannot be cloned or split. This sheds new light on quantum computation and quantum information.

متن کامل

Quantum History Cannot Be Copied

We show that unitarity does not allow cloning of any two points in a ray. This has implication for cloning of the geometric phase information in a quantum state. In particular, the quantum history which is encoded in the geometric phase during cyclic evolution of a quantum system cannot be copied. We also prove that the generalized geometric phase information cannot be copied by a unitary opera...

متن کامل

Quantum Zero-Error Algorithms Cannot be Composed

We exhibit two black-box problems, both of which have an efficient quantum algorithm with zero-error, yet whose composition does not have an efficient quantum algorithm with zero-error. This shows that quantum zero-error algorithms cannot be composed. In oracle terms, we give a relativized world where ZQP 6= ZQP, while classically we always have ZPP = ZPP.

متن کامل

Quantum states cannot be transmitted efficiently classically

We show that any classical communication protocol that can approximately simulate the result of applying an arbitrary measurement (held by one party) to a quantum state of n qubits (held by another) must transmit at least 2 bits, up to constant factors. The argument is based on a lower bound on the classical communication complexity of a distributed variant of the Fourier sampling problem. We o...

متن کامل

Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox.

Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen matter with an external system we show that the black-hole information paradox becomes more severe, even for cosmologically sized black holes. We rule out the possibility that the information about the in-fallen matter might hide in correlations between the Hawking radiation and the internal states ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2006

ISSN: 0375-9601

DOI: 10.1016/j.physleta.2005.11.041